Distribuzione chi quadrato non centrale

Al giorno d'oggi, Distribuzione chi quadrato non centrale è un argomento che ha catturato l'attenzione di molte persone in tutto il mondo. Data la sua rilevanza nella società odierna, Distribuzione chi quadrato non centrale è diventato un argomento di interesse sia per esperti che per hobbisti. Dal suo impatto sull’economia alla sua influenza sulla cultura popolare, Distribuzione chi quadrato non centrale ha dimostrato di essere un fenomeno degno di studio e analisi. In questo articolo esploreremo diversi aspetti relativi a Distribuzione chi quadrato non centrale ed esamineremo il suo significato in vari contesti. Dalla sua storia alla sua proiezione futura, Distribuzione chi quadrato non centrale continuerà a essere un argomento importante oggi e negli anni a venire.

distribuzione non centrale
Funzione di densità di probabilità
Funzione di ripartizione
Parametri (gradi di libertà)
non centralità
Supporto
Funzione di densità
Funzione di ripartizione
Valore atteso
Varianza
Indice di asimmetria
Curtosi
Funzione generatrice dei momenti per
Funzione caratteristica

In teoria delle probabilità una distribuzione non centrale (chi quadrato, o chi quadro), è una distribuzione di probabilità che generalizza la distribuzione , descrivendo la somma dei quadrati di variabili aleatorie con distribuzioni normali ridotte ma non centrate.

In statistica viene impiegata per l'analisi della varianza e per alcuni test di verifica d'ipotesi.

Definizione

La distribuzione descrive la variabile aleatoria

,

dove sono variabili aleatorie variabili indipendenti aventi distribuzioni normali ridotte (ma non necessariamente centrate) , i cui valori attesi soddisfano

.

Il parametro k è detto numero di gradi di libertà e è il parametro di non centralità. (La notazione per non è uniforme: alcuni autori prendono pari alla metà, oppure alla radice quadrata di questa somma.)

In particolare, per le variabili sono centrate e si ottiene nuovamente la distribuzione χ2:

È possibile definire la distribuzione χ2 non centrale anche tramite variabili aleatorie indipendenti di distribuzione normale standard , prendendo , ovvero

.

Indipendenza di λ

La distribuzione dipende da λ e non dai singoli valori μi.

Sullo spazio euclideo di dimensione k, infatti, si possono considerare i vettori

;

la distribuzione di probabilità del vettore normale multivariato è isotropa, ovvero invariante per isometria. In particolare la variabile aleatoria , che è il quadrato della norma di , dipende dalle solo in termini della norma di , ovvero .

Proprietà

Somma

Per definizione, la somma di variabili aleatorie di distribuzioni χ2 non centrali è ancora una variabile aleatoria di distribuzione χ2 non centrale (somma dei quadrati di variabili normali ridotte).

Più precisamente, la somma di due variabili aleatorie con distribuzioni e è una variabile aleatoria con distribuzione , con e .

Mistura di distribuzioni χ2

La distribuzione χ2 non centrale può essere espressa come mistura di distribuzioni χ2, pesate secondo la distribuzione di Poisson.

In altri termini è la distribuzione di una variabile aleatoria Z, dipendente da una variabile aleatoria J di legge di Poisson , con distribuzione condizionata di Z rispetto a J data da .

In particolare di χ2(k,λ) si possono descrivere

la densità di probabilità
e la funzione di ripartizione

tramite la densità di probabilità e la funzione di ripartizione delle distribuzioni χ2(k+2j).

Caratteristiche

La funzione generatrice dei momenti della distribuzione χ2(k,λ) non centrale è

I primi momenti semplici della distribuzione sono

e i suoi primi momenti centrali sono

La funzione caratteristica di χ2(k,λ) è

.

Formule alternative

Densità di probabilità

La densità di probabilità della distribuzione χ2(k,λ) non centrale può essere descritta tramite altre formule.

Una formula alternativa è

dove

è una funzione di Bessel del primo tipo, modificata.

Una terza formula è

per

Funzione di ripartizione

Anche la funzione di ripartizione della distribuzione χ2(k,λ) non centrale può essere descritta tramite altre formule. In particolare in statistica sono stati proposti alcuni metodi per cercare di calcolarne alcuni valori .

Una formula ricorsiva, basata sulla funzione di ripartizione della distribuzione χ2 (centrale) è

dove

Valori approssimati si possono invece ottenere tramite la distribuzione Gamma e i primi due o tre momenti, oppure tramite la distribuzione normale.

Distribuzioni non centrali

Utilizzando la distribuzione χ2 non centrale come generalizzazione della distribuzione χ2 (centrale) è possibile definire versioni non centrali delle distribuzioni t di Student, F di Fisher-Snedecor e Beta.

Note

  1. ^ (EN) M.A. Sanders, Characteristic function of the noncentral chi-square distribution (PDF), su planetmathematics.com. URL consultato il 7 marzo 2009 (archiviato dall'url originale il 15 luglio 2011).
  2. ^ D. Kerridge, Gives a very interesting probabilistic derivation, in Aust. J. Statist., 1965.
  3. ^ M. L. Tiku, Uses Laguerre polynomials to represent the noncentral chi-quare distribution, in Biometrika, 1965.
  4. ^ P. B. Patnaik, Points out some interesting geometrical features, in Biometrika, 1949.
  5. ^ E. Pearson, Studies the accuracy of the three-moment chi-square approximation, in Biometrika, 1959.
  6. ^ S. Abdel-Aty, Gives various Cornish-Fisher-type approximations, in Biometrika, 1954.

Voci correlate